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ABSTRACT: Carbohydrates play a central role in a wide
range of biological processes. As with nucleic acids and
proteins, modifications of specific sites within the glycan chain
can modulate a carbohydrate’s overall biological function. For
example, acylation, methylation, sulfation, epimerization, and
phosphorylation can occur at various positions within a
carbohydrate to modulate bioactivity. Therefore, there is
significant interest in identifying discrete carbohydrate
modifications and understanding their biological effects.
Additionally, enzymes that catalyze those modifications and
proteins that bind modified glycans provide numerous targets
for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been
assembled, generally referred to as post-glycosylational modifications.

Nucleic acids, proteins, and carbohydrates are the three
major biopolymers that mediate biological processes in

living organisms. It is well appreciated that functions of nucleic
acids and proteins are frequently modulated by chemical
modifications of the main polymer. For example, phosphor-
ylation of serine, threonine, or tyrosine residues on proteins can
lead to dramatic changes in protein function, and methylation
of specific sites within DNA can lead to silencing of gene
expression. Carbohydrates are also involved in many biological
processes and play a key role in numerous diseases. Like other
biopolymers, biological functions of carbohydrates can be
modulated by modifying specific sites within an oligosacchar-
ide/polysaccharide chain. Modifications can involve a variety of
functional groups but most often entail derivatization of
hydroxyls or amino groups, such as acylation, sulfation,
methylation, and phosphorylation (for representative examples,
see Figure 1).1−4 As a result, significant efforts are underway to
identify carbohydrate modifications and link them with specific
biological functions. Insights into the biosynthesis and
functions of modified glycans should translate into new
therapies for infectious, inflammatory, malignant, and degener-
ative diseases (Figure 2).
Carbohydrates and their modifications are extremely difficult

to study. Carbohydrates, or glycans (free carbohydrates or
carbohydrate fragments of glycoproteins and glycolipids), are
composed of monosaccharides linked together to form
oligosaccharides or polysaccharides. Variations in linkage
stereochemistry, linkage regiochemistry, and branching gen-
erate natural glycans of enormous structural diversity. Further
adding to this diversity, modifications at various sites yield
additional structures that can change dynamically. The
biosynthesis of glycans is not template-driven like translation
of polypeptides, and it is regulated by many factors including
availability of nucleotide donors and expression of enzymes.

Thus, protein molecules with the same polypeptide sequence
can have distinct glycans appended to them, resulting in an
array of glycoforms.5 As a result, predicting or controlling
glycan expression can be difficult. Moreover, methods to detect,
characterize, and sequence glycans can be slow and arduous.
Therefore, the full repertoires of glycans and glycan
modifications present in organisms (their glycomes) are
unknown.
Our understanding of the roles of carbohydrate modifica-

tions, and glycobiology in general, has been primarily driven by
studies on the proteins that bind to carbohydrates and the
enzymes involved in the biosynthesis and catabolism of
carbohydrates. It has been estimated that over 400 proteins
in the human glycome are involved in the biosynthesis,
catabolism, and binding of carbohydrates.6 Although the exact
number of proteins that contribute to glycan modifications is
not known, a significant number are involved in post-
glycosylational modifications2 of carbohydrates or recognition
of modified glycans. Moreover, many proteins that interact with
unmodified glycans can be inhibited when the target substrate
or ligand is modified.
Below, we provide an overview of the current understanding

of post-glycosylational modifications (sulfation, acylation,
phosphorylation, methylation, and epimerization) and highlight
recent progress in the field. In addition, we discuss current
challenges and barriers that impede progress in the field.
Finally, we describe opportunities for development of new basic
research tools and new therapeutics related to post-glycosyla-
tional modifications.
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■ SULFATION

Sulfated glycans are a major class of enzymatically modified
glycans with important biological functions. All classes of
glycans can be sulfated. Sulfated glycosaminoglycans (GAGs)
are found on cell surfaces and within the extracellular matrix,
where they mediate binding interactions and provide structural
support. Biological activity depends on the pattern of sulfation,
sometimes referred to as the “sulfation code”.7 Sulfation
similarly tunes the biological activity and physical properties of
glycoproteins. Finally, sulfoglycolipids are essential components
of testis and the myelin sheath surrounding neurons.8

Sulfated Glycosaminoglycans (GAGs). Glycosaminogly-
cans are unbranched polysaccharides made up of repeating
disaccharide units. There are five major classes of GAGs:
hyaluronan, chondroitin, dermatan, keratan, and heparin/
heparan sulfate.9 Of these, hyaluronan is not sulfated.
Chondroitin, dermatan, and keratan contain sulfate groups on
hydroxyls, but N-linked sulfation does not occur for these
GAGs. Heparin and heparan sulfate can contain both O- and N-
linked sulfates. In general, heparins are more sulfated with
higher content of iduronic acid (IdoA) than heparan sulfates.
Figure 3 shows representative types of sulfated GAGs. Since
varying degrees of sulfation are possible and different domains

within a polysaccharide can have different sulfation patterns, a
very large number of distinct structures are possible.
Sulfated GAGs are products of a highly orchestrated process

within the Golgi apparatus. For example, the syntheses of
heparin and heparan sulfate involve coordinated removal of
some N-acetyl groups, addition of N-sulfates, epimerization,
and addition of O-sulfates. Thus far, 30 genes encoding
sulfotransferases that modify GAGs have been identified
(summarized in Figure 3). These sulfotransferases are localized
to the Golgi apparatus and use 3′-phosphate-5′-phosphosulfate
(PAPS) as the donor for the sulfate group. Each enzyme
modifies a specific position on the GAG backbone, but there is
considerable overlap in the enzymatic function of these
sulfotransferases.10 The C3 of GlcNAc in heparan sulfate, for
example, can be sulfated by enzymes encoded by 5 genes. The
seeming redundancy presumably allows sulfotransferases to be
expressed in a cell-specific manner and change during
development or in response to stimuli.
Although biosynthesis and modification of GAGs is not

template-driven, it appears to be tightly regulated through
complex mechanisms. For example, recent sequencing of the
glycan portion of bikunin found a single, defined sequence of
chondroitin out of the billions of distinct GAGs possible.11

Figure 1. Representative examples of common carbohydrate modifications in nature. Symbols for each monosaccharide component are identified in
the legend. Glycosidic linkages are identified by α or β with a number that identifies the carbon atom of the acceptor sugar. O-Acetylation is indicated
by Ac, O-phosphorylation is indicated by P, O-methylation is indicated by Me, N-sulfation is indicated by NS, O-sulfation is indicated by S, O-ferulyl
is indicated by Fr, and the numbers indicate the carbon atom where the modification occurs on the monosaccharide. (a) Structure of 9-O-acetylated
sialyl Lewis X. (b) Structure diversity of sialic acids. (c) Alginate structure from P. aeruginosa. (d) Mannose-6-phosphate (Man 5). (e) Structure of
sulfatide. (f) β1,2-D-Xylopyranosyl-5-O-trans-ferulyl-L-arabinofuranose (FAX). (g) O-Methylated glycan from gastropods. (h) Structure of heparin
pentasaccharide.
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Understanding how this biosynthetic machinery produces
sulfated GAGs with remarkable fidelity will require substantial
research into the multiple levels of cross-talk between
sulfotransferases. In some cases, enzymatic activity of one

enzyme is coupled to another since activity of sulfotransferases
depends on production of precursor carbohydrates.12

After biosynthesis, endo-acting sulfatases known as sulfs can
remove 6-O-sulfates from heparan sulfates.13 Two heparan

Figure 2. Medical significance of modified glycans. (a) Modified glycans mediate biological functions across various organ systems and have been
linked to malignant, degenerative, infectious, and inflammatory diseases. (b) Strategies that intervene in these functions could lead to new classes of
therapies. Production of modified glycans can be downregulated by targeting their biosynthetic machinery, either by blocking expression or activity
of carbohydrate-modifying enzymes. Antibodies and glycomimetics can disrupt the ligand−receptor interactions of modified glycans. Finally,
therapeutic strategies can target the extracellular esterases that remodel patterns of glycan modifications.

Figure 3. Biosynthesis and structures of sulfated GAGs. A family of carbohydrate sulfotransferases catalyzes the sulfation of GAGs at specific
positions within the repeating disaccharide repeat units.
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sulfate endosulfatases are known in humans, Sulf-1 and Sulf-2.
They function extracellularly and can dynamically alter the
sulfation patterns by removing 6-O-sulfate. The spatiotemporal
pattern of 6-O-sulfate is determined by expression of the
heparan sulfate 6-O-sulfotransferases within the Golgi apparatus
and the extracellular activity of the sulfatases Sulf-1 and Sulf-2.
Detection and Characterization. Characterization of

sulfated GAGs is essential for understanding relationships
between structure and function, but it remains challenging.
Some monoclonal antibodies are available for the detection of
certain epitopes found in GAGs and have been used to evaluate
sulfation changes in tissues,14,15 but it is difficult to obtain
specific structural information with these reagents or to
determine the precise location of sulfates along the GAG
backbone. Detailed information on the positions of sulfates
requires sequencing of sulfated GAGs. Recently, the first
sulfated GAG was sequenced via mass spectrometry.11

Biological and Medical Significance. Sulfated GAGs are
expressed on proteoglycans, which are key cell-surface
receptors and components of the extracellular matrix. The
ability of sulfation to tune the function of these proteoglycans is
a recurring theme. Sulfation patterns can alter properties of the
extracellular matrix, influence cell−cell interactions, and modify
ligand binding to receptors. For example, the sulfation pattern
of heparan sulfate determines its affinity for growth factors,
which influences their retention and diffusion within the
extracellular matrix.16

Genetic disorders of carbohydrate sulfotransferases illustrate
that sulfated GAGs are especially important for development of
connective tissue. Spondylepiphyseal dysplasia (Omani Type),
for instance, is caused by a missense mutation in carbohydrate
sulfotransferase 3 (CHST3), the gene encoding chondroitin 6-
O-sulfotransferase-1 (C6ST-1).17 This mutation causes skeletal
abnormalities (club feet, congential joint dislocation) as well as

deafness and a congenital heart defect (ventricular septal
defect).18 Mutation of CHST14, which encodes dermatan-4-
sulfotransferase 1 (D4ST1), causes another syndrome of
skeletal abnormalities, the musculocontractural type of Ehlers-
Danlos syndrome.19 Loss of CHST6, which encodes corneal
GlcNAc-6-sulfotransferase, leads to macular corneal dystrophy,
in which painful opacities develop within the cornea. Affected
individuals often require a corneal transplant, but abnormalities
in other organs are subtle or absent.
As another example, the glial scar, which forms after spinal

cord injury, illustrates how specific sulfation patterns influence
biological function. In response to nerve damage, astrocytes
upregulate expression of chondroitin sulfate proteoglycans,
likely due to increases in TNF-α. Chondroitin sulfate within the
glial scar repels growing axons as they attempt to cross the
injury site. Removal of sulfates using chondroitinase ABC
stimulates axon regeneration in a rat model of CNS injury.20 In
vitro models have confirmed that chondroitin sulfate is
chemorepulsive for neurons and the potency varies with the
sulfation pattern (e.g., chondroitin-4-sulfate versus chondroitin-
6-sulfate). For example, chondroitin-4-sulfate (CS-A) was
found to be a significantly more potent chemorepellent than
chondroitin-6-sulfate (CS-C),21 and chondroitin-4,6-bisulfate
(CS-E) was more chemorepulsive than chondroitin-4-sulfate
(CS-A).22 Downregulation of chondroitin-4,6-bisulfate (CS-E)
was shown to improve nerve attachment and extension in
vitro.22

Additionally, highly sulfated domains of heparan sulfate
create “S-domains” that are critical for binding many protein
ligands, such as chemokines and growth factors (see Figure 4).
6-O-Sulfation of glucosamine modulates signaling pathways by
enhancing and stabilizing heparan sulfate’s interactions with
ligands such as Wnts, GDNF, and FGFs. Sulfs, which
dynamically regulate sulfation patterns through 6-O-desulfation,

Figure 4. Sulfation tunes biological activity of GAGs . Sulfates are not uniformly positioned along the GAG backbone. Cells modulate the linkage
and density of sulfates added to the GAG core as one way of regulating a sulfated GAG’s biological function. Ligands that bind to sulfated GAGs
recognize specific patterns of sulfation, sometimes referred to as the “sulfation code”. In this example, the sulfation pattern of heparan sulfate
determines the binding affinity for cytokines and growth factors. Some regions, known as S-domains, are heavily sulfated and have high affinity for
ligands. Other regions contain fewer or no sulfates.
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direct embryogenesis23 and contribute to carcinogenesis24 and
inflammation.25

Heparan sulfates also facilitate uptake of metabolites and
ligands via endocytosis. Cell-surface heparan sulfate proteogly-
cans are believed to function as receptors for lipoproteins.
Studies of conditional mouse knockouts of uronyl 2-O-
sulfotransferase (Hs2st) suggest that hepatic receptors for
chylomicrons (circulating lipid transport particles) require
heparan-2-sulfate to clear plasma proteins.26 Knockout mice
lacking heparan-2-sulfate within hepatocytes have elevated
plasma triglycerides due to delayed clearance of chylomicrons.
Knockout of glucosaminyl 6-O-sulfotransferase-1 (Hs6st1) had
no effect on plasma triglycerides, which again shows the
dependence of biological function on pattern of sulfation.
Due to the widespread distribution of sulfated GAGs

throughout the body, they are likely to have additional as of
yet undescribed functions. Epigenetic studies have found that
many cancers silence HS3ST2, but the functional consequences
of the resulting changes in heparan sulfate proteoglycans are
not clear.27 Also, genome wide-association studies have linked
sulfated GAGs to unexpected diseases. For example, response
of schizophrenic patients to antipsychotics has been linked to
genetic variants (known as single nucleotide polymorphisms or
SNPs) in the carbohydrate sulfotransferase 8 (CHST8).28

Recent advances in chemical biology are providing systematic
approaches for understanding the biological significance of
sulfated GAGs. Chemical and chemo-enzymatic synthesis of
sulfated GAGs is providing materials for detailed analysis of
relationships between structure and function, which had been
unfeasible using only glycans purified from natural sources.
Advances in microfluidics, for example, enable enzymatic
synthesis of complex sulfated GAGs analogous to their natural
production in the Golgi apparatus.29 Printing these sulfated
glycans on a microarray30 in a multivalent manner to mimic
native conformations31 should accelerate progress in decipher-
ing the “sulfation code” and linking biological function with
specific structural motifs.
Toward Therapeutic Applications. Knockout studies have

shown that sulfated GAGs are valuable therapeutic targets for
many diseases, as discussed above. To translate these
discoveries into new therapies, technologies are needed to
modulate sulfation of GAGs in living cells and animals. Highly
specific inhibitors of carbohydrate sulfotransferases would offer
a new class of potential therapies and provide a toolbox for
elucidating the function of sulfated glycans. Inhibitors that
change the pattern of sulfation could be treatments for
inflammation, viral infection, and cancer.32 For example, a
small molecule screen identified some kinase inhibitors with
activity for sulfotransferases (IC50 = 20−40 μM).33 Peptide
inhibitors provide an alternative strategy with comparable
potency.34 Overall, however, there are relatively few reported
small molecule inhibitors, and enhancements to potency are
needed.
In addition to sulfotransferases, mounting evidence indicates

that sulfatases may be valuable targets for anticancer
therapeutics. Since these are extracellular esterases, they could
be targeted with inhibitors that are not cell-permeable.
Inhibitors for sulfatases would complement inhibitors of
carbohydrate sulfotransferases, but there are very few examples
of sulfatase inhibitors. Sulfamates are one class of molecules
that have been examined as substrate analogue inhibitors of
Sulf-1 and Sulf-2 (IC50 of ≈100 μM).35 A heparin mimetic was
also found to inhibit heparan sulfatases with micromolar

potency.36 Better structural and mechanistic understanding of
these carbohydrate sulfotransferases and sulfatases should
facilitate rational design of inhibitors with improved potency
and specificity.

Other Sulfated Glycoproteins. Sulfation is not restricted
to GAGs. Other types of glycans found N- and O-linked to
proteins can also be sulfated. Sialyl Lewis X, which is a terminal
structure essential for many cell−cell interactions, can contain a
sulfate group on the C6 position of GlcNAc. Also, analysis of
mucins produced by patients with cystic fibrosis identified
sulfation on the GlcNAc-6-sulfate, Gal-3-sulfate, and Gal-6-
sulfate.37,38 Additionally, sulfated GalNAc and Gal have been
found on the cancer-associated mucin MUC1 from breast
cancer cells lines.39

Biosynthesis of these sulfated glycoproteins occurs within the
Golgi apparatus using the same or similar enzymatic machinery
that produces sulfated GAGs. Two GlcNAc-6-O-sulfotrans-
ferases (GlcNAc6ST-140 = encoded by CHST2, and
GlcNAc6ST-241 = encoded by LSST) are known to produce
6-sulfo sialyl Lewis X.

Detection and Characterization. Like sulfation of GAGs,
identification and characterization of sulfated O-linked and N-
linked glycans can be slow and difficult. The primary tools now
available for assaying sulfated glycans are monoclonal antibod-
ies and mass-spectrometry. Several monoclonal antibodies
specific for sulfated carbohydrates have been developed.42−44

Monoclonal antibodies can be used for high-throughput
analysis of tissue samples, but care must be taken when
interpreting the results due to subtle differences in specificity
for structurally related glycans. Moreover, monoclonal anti-
bodies are only available for a tiny fraction of the sulfated
glycans present in the human glycome.
Mass-spectrometry, in particular MALDI-TOF, provides

detailed structural information about sulfated glycans. For
example, it was used to characterize differences in sulfation of
mucins expressed by healthy controls and patients with cystic
fibrosis.38 Although useful in linking changes in sulfation with
specific diseases, current methods for characterizing sulfation
are limited in their ability to track sulfation changes within
living organisms. Also, quantifying changes in sulfation requires
a high level of technical expertise that is not widely accessible.
Additionally, there is a need for in vivo imaging of dynamic
changes in sulfation, which would significantly improve our
understanding of how sulfation contributes to normal
physiologic functions and disease pathogenesis.

Biological and Medical Significance. Sulfated glycoproteins
have important functions in inflammation. The preferred
ligands for L-selectin (a receptor that lymphocytes use to
bind endothelial cells) are sulfated glycoproteins containing 6-
O-sulfated GlcNAc, such as 6-sulfated sialyl Lewis X on
GlyCAM-145,46 and MAdCAM-1.47 Because of its importance
to L-selectin binding, sulfation is a key regulator of tethering
and rolling of lymphocytes. Mice deficient in GlcNAc6ST-1
and GlcNAc6ST-2 had impaired homing of lymphocytes to the
lymph nodes and diminished contact hypersensitivity.48

Similarly, an antibody specific for 6-sulfo sialyl Lewis X and
its defucosylated structure bound to N- and O-glycans on
endothelial cells of lymphoid tissue, and it inhibited contact
hypersensitivity and lymphocyte homing to the spleen in
mice.43

Sulfation of MAdCAM-1 has a prominent role in the
pathogenesis of ulcerative colitis (UC),47 an autoimmune
mediated inflammation of the colon that increases the
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likelihood of colon cancer and can require surgical resection of
the colon. Interestingly, flares of ulcerative colitis are associated
with increased sulfation of MAdCAM-1. During the remission
phase of UC, endothelial cells within the high endothelial
venules (HEVs) express comparable levels of the L-selectin
receptor MAdCAM-1 relative to the active phase; however,
sulfation of MAdCAM-1 is largely absent when UC is
quiescent. It appears that active UC occurs when HEVs
express GlcNAc6ST-1 that sulfates MAdCAM-1, which triggers
inflammation by recruiting lymphocytes to the colonic lamia
propria.
Additionally, abnormally sulfated mucins appear to be central

to respiratory infections of patients with cystic fibrosis. Since
the 1970s, it has been known that cystic fibrosis patients
produce highly anionic mucins containing abundant sialic acid
and sulfates.49 These modifications are believed to contribute to
excessive production of viscous mucous, increased inflamma-
tion, and colonization with Pseudomonas aeruginosa, which
contribute to respiratory failure. Although mutations in the
cystic fibrosis transmembrane conductance regulator (CFTR)
chloride channel have been identified as the genetic cause of
cystic fibrosis, it is unclear how exactly this mutation produces
the symptoms of cystic fibrosis. It is possible that a defective
chloride channel might lead to inadequate acidification of the
Golgi lumen,50 thereby causing abnormal sialylation and
sulfation. Alternatively, chronic inflammation associated with
CF could induce expression of TNF-α that upregulates
carbohydrate sulfotransferases.51 A major challenge for the
field is determining how a defective chloride channel alters
mucin sulfation and whether abnormally sulfated mucins
contribute to the pathogenesis of CF.
Toward Therapeutic Applications. Thus far, sulfated

glycoproteins have been linked to diseases in critical need of
new therapies, such as cystic fibrosis and ulcerative colitis. A
challenge for developing new therapies for these diseases is
identifying the specific structures of disease-related sulfated
glycoproteins along with the carbohydrate sulfotransferases
required for their production. There is an opportunity to clarify
therapeutic targets and develop strategies to interfere with their
production or function. As with sulfated GAGs, inhibitors of
carbohydrate sulfotransferases would provide important tools
for studying sulfated glycoproteins that could be translated into
new therapies, but relative few are known. Additionally, sulfated
glycomimetics that block L-selectin on lymphocytes are
promising new therapies for inflammation.52

Sulfoglycolipids. The two major mammalian sulfoglycoli-
pids are sulfatide (Figure 1e) and seminolipid containing a 3-O-
sulfo-galactose linked to a lipid (ceramide and diacylglycerol,
respectively). Sulfatides are biosynthesized in the Golgi
apparatus of oligodendrocytes, and they constitute 4−6% of
glycolipids that form the myelin sheath surrounding neurons.53

Seminolipids are the major glycolipid of spermatogenic cells.
Sulfatides are necessary for proper function of the nervous

system.54 They appear to facilitate transmission of axon
potentials by organizing the paranodal junctions.54 Knockout
mice lacking sulfatides show deficiencies in learning and
memory.55 They also have irregular neuronal activity in the
hippocampus and cortex.56 In a post-mortem study of humans,
brain tissue of Alzheimer’s disease (AD) patients had
substantially lower sulfatide content relative to controls.22 A
shotgun lipidomics study, moreover, has found lower sulfatide
levels in both cerebral gray and white matter of individuals with
very mild cognitive impairment relative to controls.57 Although

investigations continue into the underlying biological basis for
the link between sulfatides and dementia, sulfatides could
contribute to the pathogenesis of AD through effects on
clearance of amyoloid-β (Aβ) peptide by apolipoprotein E
(ApoE).58 Seminolipids are known to be essential for
spermatogenesis,59 but their precise functions remain unclear.

■ ACYLATION OF GLYCANS
O-Acylation is a common, biologically important post-
glycosylational modification of many glycans. O-Acylation of
glycans may include transfer of a relatively small group like an
acetyl group or a more complex structure, such as ferulate, to a
sugar hydroxyl (see Figure 1a and 1f). Acylated glycans are
found on cell surfaces, capsular polysaccharides of certain
bacteria, and on glycoconjugates such as glycoproteins,
glycolipids, proteoglycans, and glycosylphosphatidylinositol
(GPI) anchors. Acylation and deacylation of glycans are
catalyzed by acyltransferases and esterases, respectively.
Changes in the acylation levels of glycans can significantly
affect their specific molecular recognition events, such as
binding and degradation, as well as physical properties, such as
solubility and hydrophobicity. More importantly, acylation of
glycans can play a role in human immunology, disease
pathogenesis, and cancer progression.

O-Acetylated Glycans. O-Acetylation, the most common
form of acylation, has been reported in various species from
bacteria to higher animals including humans. O-Acetylation
generally occurs within the Golgi apparatus, where an O-
acetyltransferase adds an acetyl moiety from acetyl CoA to a
specific hydroxyl group of the glycan.60,61 Once on the cell
surface, acetylesterases can remove acetyl groups to remodel
the glycans. The regulation of O-acetyltransferases and
acetylesterases is not well understood.
O-Acetylation of sialic acids is one of the most commonly

reported modifications. Sialic acids are negatively charged
monosaccharides with a nine-carbon backbone that are typically
found as the terminal residues of glycoconjugates (see Figure
1b). They are among the most structurally diverse sugars, and
are involved in many biological and pathological processes.60

Although O-acetylation is the most common modification of
sialic acids, numerous other modifications of sialic acid are
known, including sulfation, phosphorylation, methylation, and
lactylation.60 O-Acetylation of the C4, C7, C8, and C9 positions
of sialic acid has been reported.60,62 Acetylation of sialic acids
has been shown to be involved in many biological and
pathological processes such as cancer and viral infections.60,61,63

Sialate-O-acetyltransferase and sialate-O-acetylesterase cata-
lyze O-acetylation and de-O-acetylation of sialic acids.62,64 At
least two genes (NeuO and NeuD) are known to be responsible
for the O-acetylation of sialic acids. Acetyl groups are believed
to be first incorporated into the C7 position of sialic acid;
however, they can subsequently migrate to the C9
position.65−67 Migration of the acetyl group to the 9-position
may occur spontaneously under physiological conditions,68 or
under the influence of enzymatic isomerization.69 Alternatively,
direct acetylation of the C9 position may occur.65−67

Acetylation at the C4 position is less common and has been
found in some animals including guinea pigs, bovine, horses,
and mice.70−73

O-Acetylation of polysaccharides produced by bacteria and
other microorganisms is also known. In one example, O-
acetylation occurs on alginates, which are polysaccharides
produced by brown seaweeds and certain bacteria. Alginates
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contain 1,4-linked β-D-mannuronic acid and α-L-guluronic acid.
In alginates from bacteria, such as mucoid P. aeruginosa, one or
both of the O2 and O3 positions of the mannuronate residues
are acetylated. The presence of O-acetyl groups modulates
virulence in patients with cystic fibrosis (CF) since these
acetylated glycans inhibit opsonic killing and prevent activation
of the alternative complement pathway.74 As detailed in a
recent review,75 the bacterial alginate biosynthesis pathway
involves polymerization of GDP-mannuronic acid to form a
linear polymer, which is subsequently modified by O-
acetylation of some of the D-mannuronic acid residues along
with epimerization of nonacetylated D-mannuronic acid
residues to L-guluronic acid. It has been demonstrated that
algF, algJ, and algI genes encode the biosynthetic machinery of
acetylation.76 Mutation of these genes in P. aeruginosa blocked
O-acetylation of alginate.76

Detection and Characterization. Identification and charac-
terization of O-acetylation in biological samples, such as tissues,
can be challenging. Techniques such as NMR spectroscopy can
be used to determine the structure of glycans and to precisely
define the position of the O-acetyl groups, but this method
typically require substantial amounts of a homogeneous glycan,
which is often difficult to obtain from a complex sample.
Therefore, such a method is not well-suited to high-throughput
evaluation of many biological samples, such as large numbers of
cancer biopsy samples.
Another commonly used method for the structure

determination of O-acetylated glycans is mass spectrometry
(MS). This technique can be applied to complex biological
samples, but it is difficult to define the exact position, glycan
sequence, and stereochemistry of glycosidic linkages associated
with the acetylated residue. In addition, chemical methods used
to prepare glycans for MS analysis, such as basic or acidic
treatment, may result in the loss or migration of the acetyl
group from one position to another. Therefore, in order to
improve characterization of these glycans, MS is often coupled
with other detection methods including enzymatic degradation,
radiolabeling, binding assays, and various chemical and
spectroscopic methods.67,77−81

Biological and Medical Significance. O-Acetylation of
glycans plays an important role in human immunology, disease
pathogenesis, and cancer progression. Cancer is one particular
area where O-acetylation displays alterations and contributes to
the disease. For example, more than 50% of sialic acids present
in human colonic mucins are O-acetylated,80 and a reduction in
the level of O-acetylated sialic acids is a major alteration related
to progression of colorectal cancer.82 In addition, O-acetylated
sialic acids are overexpressed in the tumor-associated antigens
sialyl Lewis X, GD3 and GM3.79,83−85 O-Acetylation of sialic
acids mediates the survival of peripheral blood mononuclear
cells (PBMC) of acute lymphoblastic leukemia (ALL) patient.86

A recent study demonstrated a correlation in the level of
acetylated sialic acid in the cytosolic and lysosomal fractions
from lymphoblasts of ALL patients with sialate-O-acetylesterase
activity,87 which suggests that sialate-O-acetyltransferase and
sialate-O-acetylesterase activities are responsible for the
enhanced level of 9-O-acetylated sialic acid in ALL lympho-
blasts.
O-Acetylated glycans also play a critical role in bacterial and

viral infections. Overproduction of alginate is believed to
produce a thick biofilm that protects bacteria from the host
defense mechanism and antibiotic treatment, which is a major
problem for treating patients with CF.88−90 Finally, O-

acetylation can play an important role in viral adhesion to
host cells. For example, whereas 9-O-acetylation of sialic acids is
required for the binding of influenza C viruses, it prevents
attachment of both influenza A and B viruses.91

O-Acetylated glycans are also involved in other biological
processes. For example, O-acetylation of sialic acids is thought
to regulate inhibitory signaling in B lymphocytes.92 Addition-
ally, a defect in sialate-O-acetylesterase activity is linked to other
human diseases including rheumatoid arthritis, type 1 diabetes,
and some autoimmune disorders.93,94

Toward Therapeutic Applications. Enzymes that catalyze
the transfer and hydrolysis of O-acetyl groups are potential
therapeutic targets for cancer and infectious diseases, but this
area has been largely understudied. For example, mutated P.
aeruginosa incapable of O-acetylating alginate had disrupted
bacterial cell walls due to accumulation of alginate polymers in
the periplasm.95 A small molecule inhibitor specific for bacterial
acetyltransferase, therefore, might help treat patients with CF.
While CoA has been reported to be a general inhibitor for O-
acetyltransferases,67 there are no published selective inhibitors
of sialate-O-acetyltransferases and sialate-O-acetylesterases.

Other Types of Acylation. Lactylation is a less common
modification, but lactyl groups have been reported in the
glycolipids of M. smegmatis96 and in higher animals including
humans.97 The presence of a 9-O-lactyl-N-acetylneuraminc acid
has been reported in human gastric aspirates.97 Additionally, 4-
O-acetyl-9-O-lactyl-N-acetylneuraminic acid was identified from
horse submandibular gland.98 However, the biological functions
of this type of modification remain unknown.
In addition to the simple O-acylation of carbohydrates with

acetic acid, acylation with longer chain fatty acid are found in
bacteria and plants.99−102 For example, lipopolysaccharide
(LPS) is a major component of the outer membrane in
Gram-negative bacteria and is often referred to as an endotoxin.
LPS protects bacteria against antibiotic treatment and stress,
and it plays a role in the ability of bacteria to cause diseases. It is
divided into three regions: lipid A, core polysaccharide, and O-
antigen repeats.103 The LPS structure can vary in different
bacteria and often determines the virulence of the bacteria and
how it interacts with receptors of the innate immune system.104

The O-antigen is the most variable region and can bear repeats
of three to five sugars, which can undergo further modifications.
The majority of enzymes and genes coding for the biosynthesis
and transport of LPS have been identified, and they are targets
for the development of new antibiotics and vaccines.105−107

Plant glycans can also be acylated with ferulate, which can
undergo radical coupling reactions that causes cross-linking
between cell wall polysaccharides of some plants such as maize
bran.108 The cross-linking of polysaccharides by dehydordifer-
ulates may contribute to the plant’s defenses against insects and
diseases.108

■ PHOSPHORYLATION

Phosphorylation of carbohydrates is also an important feature
in glycobiology. Phosphorylated glycans play key roles in
protein transport, bacterial pathogenesis, and human diseases.
109−111 Carbohydrates can be phosphorylated with simple
phosphate groups or with more complex phosphodiester
groups. Phosphorylation of carbohydrates occurs pre- or
coglycosylationally. Postbiosynthesis phosphorylation of carbo-
hydrates is rare; nevertheless, a few examples of phosphorylated
carbohydrates are known.
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Mannose-6-phosphate (M6P) is one of the most studied
phosphorylated glycans. Biosynthesis of M6P proceeds via a
two-step enzymatic process. Initially, GlcNAc-1-phosphate is
transferred by UDP-GlcNAc:lysosomal enzyme GlcNAc-
phosophotransferase to the terminal mannose residues of
selected high mannose glycans, followed by removal of GlcNAc
residues by N-acetylglucosamidase to give M6P (Figure 1d),
which allows the transport of proteins to the lysosome by
interacting with the M6P receptor.4,112

In Gram-positive bacteria, phosphorylated polymers known
as teichoic acids are attached to the peptidoglycan layer via a
phosphodiester linkage.113 Teichoic acids contribute to
bacterial resistance to human lysozyme114 and play a role in
biofilm formation.115 The enzymes and genes coding for the
biosynthesis of teichoic acids from Staphylococcus aureus have
been identified.116,117 Understanding the biosynthetic pathways
of teichoic acids may lead to the development of inhibitors that
can be useful for treating infections caused by Gram-positive
bacteria.
A variety of other phosphorylated glycans have been found in

nature including cyclic-phosphate-containing capsular poly-
saccharides isolated from Vibrio cholera O139,118 phosphor-
ylcholine-glyconjugates in nematodes,119 and lipophosphogly-
can in Leishmania parasites.120 Leishmania is a sandfly-
transmitted parasite that is responsible for the Leishmaniasis
disease. The parasite expresses lipophosphoglycan, which
enables the parasite to survive defense mechanisms of the
host.120

Detection and Characterization. Mass spectrometry and
NMR are also commonly used for the characterization of
phosphorylated glycans.121,122 NMR spectroscopy can provide
structural information and precisely define the phosphorylated
site(s) within the glycan. However, this method requires large
amount of sample, which is often hard to obtain from complex
samples. Alternatively, with recent advances in MS character-
ization of these glycans can be achieved with much less sample.
However, accurate assignment of the positions of the
phosphate groups within the glycan still challenging. The MS
analysis can be further complicated by the instability of the
phosphorylated glycans.
Biological Significance and Therapeutic Applications.

O-Phosphorylation of glycans plays key roles in protein
transport, bacterial pathogenesis, and human diseases. For
example, mutations in the genes encoding subunits of GlcNAc-
1-phosphotransferase enzyme in humans result in lysosomal
disorders,123−125 and mannose phosphorylation is important
for controlling the secretion and extracellular levels of leukemia
inhibitory factor (LIF).126 Using mouse embryonic stem cells, it
was demonstrated that phosphorylated mannose of LIF
stimulated cell differentiation. A similar mechanism may
apply to other cytokines and proteins bearing M6P to see if
they can be regulated. Defects in the phosphorylation
modifications of O-mannosyl glycans may be responsible for
some diseases including Fukuyama congenital muscular dys-
trophy and muscle-eye-brain disease.121 Additionally, mutation
of the dystroglycan gene Dag1 impairs dystroglycan function by
inhibiting the post-translational modification.109 However, the
biological functions of phosphorylated glycans remain poorly
defined. With better understanding of the mechanism and
functions of these glycan, opportunities for therapeutic
applications will be possible.

■ METHYLATION

O-Methylated carbohydrates have been found in various
organisms and are most common in bacteria. Neutral O-
methylated N-glycans have been isolated from gastropods.3,127

O-Methylation of these oligosaccharides occurs at the C3
position of terminal mannose residues (Figure 1g). An 8-O-
methylated sialic acid has been reported in the starfish Asterias
forbesi128 and as glycoconjugate-bound sialic acids in Asterias
rubens.129 Additionally, O-methylated glycans have been found
in some nematodes including Toxocara canis (T. canis) which
bear O-methylated oligosaccharides similar to the mammalian
blood-group antigen H.130 They contain one or two methyl
groups on the O2-position of the terminal fucose and the O4-
position of galactose.130 In general, O-methylation occurs on
mature glycans by O-methyltransferases that utilize S-
adenosylmethionine (SAM) as the methyl donor. Detection
and characterization of O-methylated glycans are achieved using
various chemical and spectroscopic methods similar to those
previously described including NMR and mass spectrometry.131

Biological Significance and Therapeutic Applications.
O-Methylated glycans can play a role in human infections and
diseases. Although it is commonly found in dogs, the T. canis
parasite is known to infect humans, especially young
children.132 The parasite larvae can damage tissues it enters
and give rise to visceral larva migrans (VLM) or ocular larva
migrans (OLM).132 Synthetic glycoconjugates of these O-
methylated glycans induce parasite-specific antibodies in
approaches to generate a vaccine.133 The ability of parasite
glycans to modulate host immune response may be an
important first step toward designing effective molecular or
glycoconjugate-based vaccines that can offer lifelong protection
against the parasite.
In addition, mycobacteria are known to cause serious human

diseases such as tuberculosis. Some of the mycobacteria express
O-methylated polysaccharides (PMPS) on their surfaces as part
of their GPL, which is important for their survival. It has been
suggested that PMPS play a role in the regulation of fatty acid
metabolism by forming complexes with fatty acyl chains and
acyl-CoAs; however, additional studies are needed to confirm
this hypothesis.134,135 Understanding the biosynthetic pathways
and biological functions of these molecules may lead to
potential new drugs and vaccines for diseases caused by
mycobacteria including tuberculosis.

■ EPIMERIZATION

While most modifications result in the decoration of oxygen or
nitrogen atoms linked to monosaccharide residues, epimeriza-
tion alters the stereochemistry at one of the carbon atoms
producing a new monomer residue. For example, D-glucuronyl
C5-epimerase converts D-glucuronic acid residues within an
oligosaccharide/polysaccharide chain to L-iduronic acid resi-
dues by epimerizing the C5 position. This can lead to major
effects on glycan structure and function.
One area where epimerization plays a key role is in the

biosynthesis of certain glycosaminoglycans, including heparin,
heparan sulfate, and dermatan sulfate.136 Conversion of
glucuronic acids to iduronic acid residues is an important
step in the formation of these saccharides, and this process
affects the biological activity of the GAG chains. For example,
an increase in iduronic acid content increases the antiprolifer-
ative activity of dermatan sulfate in human lung fibroblasts, and
iduronic acid rich heparin and heparan sulfates displayed
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antiproliferative effects on mesothelioma cells.137,138 Alterations
in epimerase levels have also been associated with diseases. A
recent study has shown a significant reduction of D-glucuronyl
C5-epimerase expression in human breast cancer.139 Since this
enzyme is normally expressed in most human tissues, detection
of this change may be useful as a diagnostic and/or prognostic
marker in cancer.
In bacteria, epimerization of the C5 position of mannuronic

acid to produce guluronic acid was observed in the biosynthesis
of alginates.75 Epimerization of D-mannuronic acid to L-
guluronic acid occurs in the periplasm by mannuronan C5-
epimerase, and the gene (AlgG) responsible for this conversion
has been identified. The mannuronan C5-epimerase could be
targeted to disrupt the biosynthesis of alginate in bacteria,
which play a role in protecting the bacteria against host
defenses and antibiotic treatment.

■ OTHER MODIFICATIONS

Certain microorganisms are reported to produce enzymes that
can carry out post-glycosylational modifications on host
glycans. For example, certain bacteria and viruses express
glycosidases that can cleave off sugars from host glycans to
allow for their colonization and pathogenesis.140,141 For
example, the influenza virus contains a neuraminidase that
cleaves sialic acid residues from host cell surface glycans. This
enzyme is crucial for the spread of the virus, and inhibition of
this enzyme forms the basis of several FDA-approved
treatments.
Additionally, certain bacteria found in the gut, such as

Bacteroides thetaiotaomicrometer, express glycosidases that
remove hexose sugars from host cell surface glycans.142 They
also express genes that encode various sialic acid specific 9-O-
acetylesterase, a mucin-desulfating sulfatase, and a chondroitin
lyase.142 These examples illustrate how microbes can modify
host glycans and support targeting these enzymes for the
development of new therapeutics.

■ PERSPECTIVE AND FUTURE DIRECTIONS

As key modulators of glycan function, post-glycosylational
modifications play a critical role in many normal and disease
processes. At present, however, there are still many challenges
and barriers that impede progress toward understanding and
fully exploiting this area of biology. As a result, this is a rapidly
evolving field with numerous opportunities for major
contributions.
First, new technologies and new information are needed to

define the key players: the modified glycans themselves, their
modifying enzymes, and the proteins that bind to modified
glycans. One major need is a high-throughput, high-content
technology for rapidly identifying and characterizing glycan
modifications in complex biological samples, such as biopsy
samples. Most techniques currently used to study glycans and
glycan modifications are slow, require large amount of pure
glycan, are unsuitable for high-throughput studies, and/or
provide only cursory information about structure. Furthermore,
the lability of many modifications hinders their characterization,
particularly by mass spectrometry. In addition to the glycans,
many of the enzymes that modify glycans have yet to be
identified, sequenced, and characterized. Moreover, many of the
proteins that bind to modified glycans are unknown, although
glycan array technology is at least partially addressing this issue.

30,143,144 Identification of the key players is crucial for a more
complete understanding of the roles of glycan modifications.
Second, new tools and techniques are needed to modulate

and control functions of the key players. Gene knockout
experiments and siRNA inhibition are powerful tools for
studying protein function, but these techniques are not well-
suited for controlling glycan expression. While these techniques
can be applied to the associated proteins, knowledge of the
target gene(s) is an important prerequisite. Antibodies and
small molecule inhibitors can also be used to modulate and
control biomolecule function. For example, they are commonly
used as agonists or antagonists to define the basic functions of
proteins and validate them as therapeutic targets. At present,
however, there are very few small molecule inhibitors of
proteins that produce or interact with modified glycans and
most possess only modest activity. In addition, few antibodies
specific for modified glycans or related proteins are available.
Therefore, development of potent and selective small molecule
inhibitors and/or antibodies could have a significant impact on
the field.
Finally, these new tools, information, and technologies will

provide better insight into many fundamental questions about
glycan modifications. How do genetic and environmental
factors contribute to the repertoire of glycan modifications in
vivo? How are they regulated? What other biological processes
and diseases do they affect? With the many advances over the
past few years and rapid growth of new information in the
coming years, the field is poised for significant expansion.
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